Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development.
نویسندگان
چکیده
Normal blood-cell differentiation is controlled by regulated gene expression and signal transduction. Transcription deregulation due to chromosomal translocation is a common theme in hematopoietic neoplasms. AML1-ETO, which is a fusion protein generated by the 8;21 translocation that is commonly associated with the development of acute myeloid leukemia, fuses the AML1 runx family DNA-binding transcription factor to the ETO corepressor that associates with histone deacetylase complexes. Analyses have demonstrated that AML1-ETO blocks AML1 function and requires additional mutagenic events to promote leukemia. Here, we report that the loss of the molecular events of AML1-ETO C-terminal NCoR/SMRT-interacting domain transforms AML1-ETO into a potent leukemogenic protein. Contrary to full-length AML1-ETO, the truncated form promotes in vitro growth and does not obstruct the cell-cycle machinery. These observations suggest a previously uncharacterized mechanism of tumorigenesis, in which secondary mutation(s) in molecular events disrupting the function of a domain of the oncogene promote the development of malignancy.
منابع مشابه
Disruption of the NHR4 domain structure in AML1-ETO abrogates SON binding and promotes leukemogenesis.
AML1-ETO is generated from t(8;21)(q22;q22), which is a common form of chromosomal translocation associated with development of acute myeloid leukemia (AML). Although full-length AML1-ETO alone fails to promote leukemia because of its detrimental effects on cell proliferation, an alternatively spliced isoform, AML1-ETO9a, without its C-terminal NHR3/NHR4 domains, strongly induces leukemia. Howe...
متن کاملStructural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO's activity.
AML1/ETO results from the t(8;21) associated with 12%-15% of acute myeloid leukemia. The AML1/ETO MYND domain mediates interactions with the corepressors SMRT and N-CoR and contributes to AML1/ETO's ability to repress proliferation and differentiation of primary bone marrow cells as well as to enhance their self renewal in vitro. We solved the solution structure of the MYND domain and show it t...
متن کاملc-Jun N-terminal kinase mediates AML1-ETO protein-induced connexin-43 expression.
AML1-ETO fusion protein, a product of leukemia-related chromosomal translocation t(8;21), was reported to upregulate expression of connexin-43 (Cx43), a member of gap junction-constituted connexin family. However, its mechanism(s) remains unclear. By bioinformatic analysis, here we showed that there are two putative AML1-binding consensus sequences followed by two activated protein (AP)1 sites ...
متن کاملRUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis.
The 8;21 translocation, which involves the gene encoding the RUNX family DNA-binding transcription factor AML1 (RUNX1) on chromosome 21 and the ETO (MTG8) gene on chromosome 8, generates AML1-ETO fusion proteins. Previous analyses have demonstrated that full-length AML1-ETO blocks AML1 function and requires additional mutagenic events to promote leukemia. More recently, we have identified an al...
متن کاملCooperation between RUNX1-ETO9a and Novel Transcriptional Partner KLF6 in Upregulation of Alox5 in Acute Myeloid Leukemia
Fusion protein RUNX1-ETO (AML1-ETO, RUNX1-RUNX1T1) is expressed as the result of the 8q22;21q22 translocation [t(8;21)], which is one of the most common chromosomal abnormalities found in acute myeloid leukemia. RUNX1-ETO is thought to promote leukemia development through the aberrant regulation of RUNX1 (AML1) target genes. Repression of these genes occurs via the recruitment of the corepresso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 49 شماره
صفحات -
تاریخ انتشار 2004